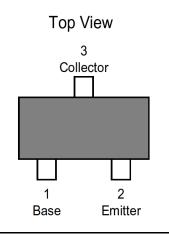
MMBT3906W


MMBT3906W SOT-323 Silicon General Purpose Transistor (PNP)

General description

SOT-323 Silicon General Purpose Transistor (PNP)

FEATURES

- · Simplifies Circuit Design
- RoHS Compliant
- Green EMC
- Matte Tin(Sn) Lead Finish
- Weight: approx. 0.001g

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Value	Unit	
Collector Base Voltage	-Vсво	40	V	
Collector Emitter Voltage	-V _{CEO}	40	V	
Emitter Base Voltage	-V _{EBO}	5	V	
Collector Current	-lc	200	mA	
Total Power Dissipation	P _{tot}	200	mW	
Junction Temperature	Tj	150	°C	
Storage Temperature Range	T _{stg}	- 55 to +150	°C	

MMBT3906W

Characteristics at T_a = 25 ∘C

Parameter	Symbol	Min.	Max.	Unit
DC Current Gain at -V _{CE} = 1 V, -I _C = 0.1 mA at -V _{CE} = 1 V, -I _C = 1 mA at -V _{CE} = 1 V, -I _C = 10 mA at -V _{CE} = 1 V, -I _C = 50 mA at -V _{CE} = 1 V, -I _C = 100 mA	hfe hfe hfe hfe hfe	60 80 100 60 30	- 300 -	
Collector Emitter Cutoff Current at -V _{CE} = 30 V	-Ices	-	50	nA
Emitter Base Cutoff Current at -V _{EB} = 3 V	-lebo	-	50	nA
Collector Base Breakdown Voltage at -I _C = 10 μA	-V(BR)CBO	40	-	V
Collector Emitter Breakdown Voltage at -I _C = 1 mA	-V(BR)CEO	40	-	V
Emitter Base Breakdown Voltage at -I _E = 10 μA	-V(BR)EBO	5	-	V
Collector Emitter Saturation Voltage at $-I_C = 10$ mA, $-I_B = 1$ mA at $-I_C = 50$ mA, $-I_B = 5$ mA	-VCE(sat)	- -	0.25 0.4	V
Base Emitter Saturation Voltage at -I _C = 10 mA, -I _B = 1 mA at -I _C = 50 mA, -I _B = 5 mA	-V _{BE} (sat)	0.65 -	0.85 0.95	V
Transition Frequency at -V _{CE} = 20 V, I_E = 10 mA, f = 100 MHz	f⊤	250	-	MHz
Collector Output Capacitance at -V _{CB} = 10 V, f = 100 KHz	Соь	-	4.5	pF
Delay Time at $-V_{CC} = 3 \text{ V}$, $-V_{BE(OFF)} = 0.5 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	t _d	-	35	ns
Rise Time at $-V_{CC} = 3 \text{ V}$, $-V_{BE(OFF)} = 0.5 \text{ V}$, $-I_C = 10 \text{ mA}$, $-I_{B1} = 1 \text{ mA}$	t _r	-	35	ns
Storage Time at -V _{CC} = 3 V, -I _C = 10 mA, I_{B1} = - I_{B2} = -1 mA	t stg	-	225	ns
Fall Time at -V _{CC} = 3 V, -I _C = 10 mA, I_{B1} = - I_{B2} = -1 mA	t _f	-	75	ns

Typical characteristics

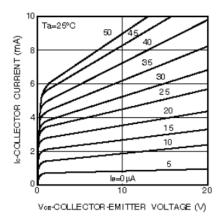


Fig.1 Grounded emitter output characteristics

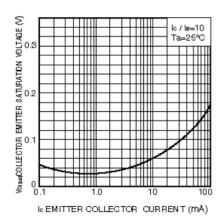


Fig.2 Collector-emitter saturation voltage vs. collector current

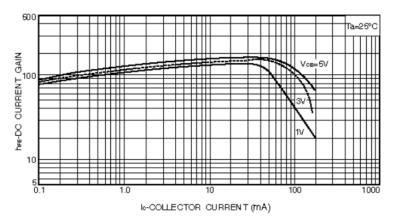


Fig.3 DC current gain vs.collector current (I)

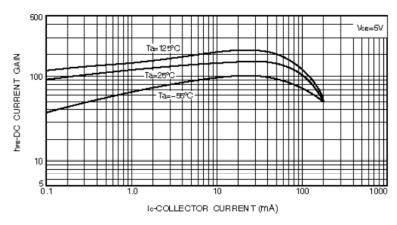
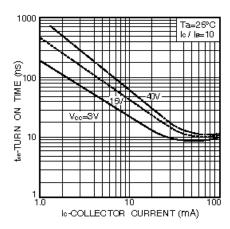



Fig.4 DC current gain vs. collector current (II)

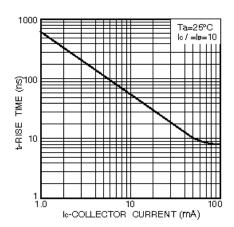
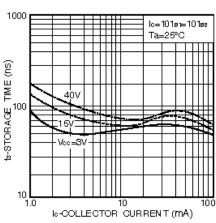



Fig.8 Turn-on time vs. collector current

Fig.9 Rise time vs. collector current

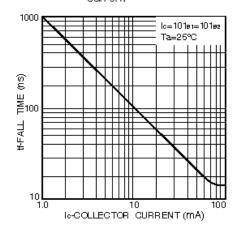
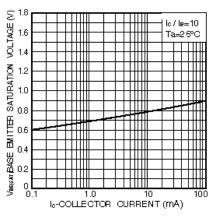
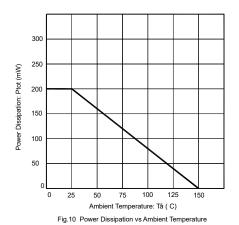
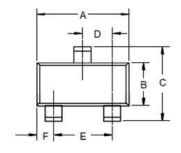
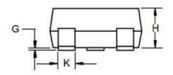
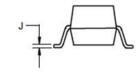



Fig.10 Storage time vs. collector current

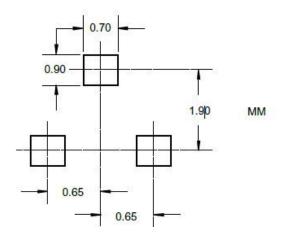
Fig.11 Fall time vs. collector current


Fig.6 Base-emitter saturation voltage vs. collector current


MMBT3906W

SOT-323 Package information



-		DIMEN	ISIONS		9-2
DIM	INCHES		MM		
	MIN	MAX	MIN	MAX	NOTE
Α	.071	.087	1.80	2.20	
В	.045	.053	1.15	1.35	
C	.083	.096	2.10	2.45	ĺ
D	.026 Nominal		0.65Nominal		,
E	.047	.055	1.20	1.40	
F	.012	.016	.30	.40	
G	.000	.004	.000	.100	
Н	.035	.039	.90	1.00	
J	.004	.010	.100	.250	
K	.006	.016	.15	.40	Ÿ.

Suggested Pad Layout

Important Notice and Disclaimer

DOESHARE has used reasonable care in preparing the information included in this document, but DOESHARE does not warrant that such information is error free. DOESHARE assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

DOESHARE no warranty, representation or guarantee regarding the documents, circuits and products specification, DOESHARE reservation rights to make changes for any documents, products, circuits and specifications at any time without notice.

Purchasers are solely responsible for the choice, selection and use of the DOESHARE products and services described herein, and DOESHARE assumes no liability whatsoever relating to the choice, selection or use of the products and services described herein.

No license, express or implied, by implication or otherwise under any intellectual property rights of DOESHARE.

Resale of DOESHARE products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by DOESHARE for the DOESHARE product or service described herein and shall not create or extend in any manner whatsoever, any liability of DOESHARE.